enow.com Web Search

  1. Ad

    related to: collinear geometry def algebra examples in real life situation

Search results

  1. Results from the WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

  3. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight. Contemporary mathematicians view geometry as an incidence structure with an automorphism group consisting of mappings of the underlying space that preserve incidence. Such a mapping ...

  4. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    For example, right triangles, isosceles triangles and equilateral triangles are non-generic and non-degenerate. In fact, degenerate cases often correspond to singularities, either in the object or in some configuration space. For example, a conic section is degenerate if and only if it has singular points (e.g., point, line, intersecting lines ...

  5. Pappus's hexagon theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_hexagon_theorem

    In particular, the situation may be as in the next diagram, which is the diagram for Lemma X. Just as before, we have (J, G; D, B) = (J, Z; H, E). Pappus does not explicitly prove this; but Lemma X is a converse, namely that if these two cross ratios are the same, and the straight lines BE and DH cross at A, then the points G, A, and Z must be ...

  6. Partial geometry - Wikipedia

    en.wikipedia.org/wiki/Partial_geometry

    A semipartial geometry is a partial geometry if and only if ⁠ = (+) ⁠. It can be easily shown that the collinearity graph of such a geometry is strongly regular with parameters ⁠ ( 1 + s ( t + 1 ) + s ( t + 1 ) t ( s − α + 1 ) / μ , s ( t + 1 ) , s − 1 + t ( α − 1 ) , μ ) {\displaystyle (1+s(t+1)+s(t+1)t(s-\alpha +1)/\mu ,s(t+1 ...

  7. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    In geometry, Monge's theorem, named after Gaspard Monge, states that for any three circles in a plane, none of which is completely inside one of the others, the intersection points of each of the three pairs of external tangent lines are collinear.

  8. Incidence geometry - Wikipedia

    en.wikipedia.org/wiki/Incidence_geometry

    In a projective plane, every non-collinear set of n points determines at least n distinct lines. As the authors pointed out, since their proof was combinatorial, the result holds in a larger setting, in fact in any incidence geometry in which there is a unique line through every pair of distinct points.

  9. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    In the complex plane (formed by viewing the real and imaginary parts of a complex number as the x and y Cartesian coordinates of the plane), concyclicity has a particularly simple formulation: four points in the complex plane are either concyclic or collinear if and only if their cross-ratio is a real number. [17]

  1. Ad

    related to: collinear geometry def algebra examples in real life situation