Search results
Results from the WOW.Com Content Network
The ideal gas law, ... where P is the absolute pressure of the gas, n is the number density of the molecules ... For example, if you were to have ...
For example, in SI units R = 8.3145 ... ρ is the mass density of the gas. P is the pressure of the gas. R is the universal gas constant; T is the temperature;
For example, the density of water increases between its melting point at 0 °C and 4 °C; ... Calculate density of a gas for as a function of temperature and pressure.
Since gas molecules can move freely within a container, their mass is normally characterized by density. Density is the amount of mass per unit volume of a substance, or the inverse of specific volume. For gases, the density can vary over a wide range because the particles are free to move closer together when constrained by pressure or volume.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
Relative density can also help to quantify the buoyancy of a substance in a fluid or gas, or determine the density of an unknown substance from the known density of another. Relative density is often used by geologists and mineralogists to help determine the mineral content of a rock or other sample.
Using the number density of an ideal gas at 0 °C and 1 atm as a yardstick: n 0 = 1 amg = 2.686 7774 × 10 25 m −3 is often introduced as a unit of number density, for any substances at any conditions (not necessarily limited to an ideal gas at 0 °C and 1 atm). [3]
This list is sorted by boiling point of gases in ascending order, but can be sorted on different values. "sub" and "triple" refer to the sublimation point and the triple point, which are given in the case of a substance that sublimes at 1 atm; "dec" refers to decomposition. "~" means approximately.