enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Mass–luminosity_relation

    The mass/luminosity relation is important because it can be used to find the distance to binary systems which are too far for normal parallax measurements, using a technique called "dynamical parallax". [8] In this technique, the masses of the two stars in a binary system are estimated, usually in terms of the mass of the Sun.

  3. Luminous intensity - Wikipedia

    en.wikipedia.org/wiki/Luminous_intensity

    In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.

  4. Light intensity - Wikipedia

    en.wikipedia.org/wiki/Light_intensity

    Luminous intensity, a photometric quantity measured in lumens per steradian (lm/sr), or candela (cd) Irradiance, a radiometric quantity, measured in watts per square meter (W/m 2) Intensity (physics), the name for irradiance used in other branches of physics (W/m 2) Radiance, commonly called "intensity" in astronomy and astrophysics (W·sr −1 ...

  5. Luminosity - Wikipedia

    en.wikipedia.org/wiki/Luminosity

    In astronomy, values for luminosity are often given in the terms of the luminosity of the Sun, L ⊙. Luminosity can also be given in terms of the astronomical magnitude system: the absolute bolometric magnitude ( M bol ) of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure ...

  6. Inverse-square law - Wikipedia

    en.wikipedia.org/wiki/Inverse-square_law

    S represents the light source, while r represents the measured points. The lines represent the flux emanating from the sources and fluxes. The total number of flux lines depends on the strength of the light source and is constant with increasing distance, where a greater density of flux lines (lines per unit area) means a stronger energy field.

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The intensity of the light emitted from the blackbody surface is given by Planck's law, (,) = / (), where I ( ν , T ) {\displaystyle I(\nu ,T)} is the amount of power per unit surface area per unit solid angle per unit frequency emitted at a frequency ν {\displaystyle \nu } by a black body at temperature T .

  8. Lambert's cosine law - Wikipedia

    en.wikipedia.org/wiki/Lambert's_cosine_law

    In optics, Lambert's cosine law says that the observed radiant intensity or luminous intensity from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle θ between the observer's line of sight and the surface normal; I = I 0 cos θ.

  9. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    The Maxwell theory predicts that the energy of a light wave depends only on its intensity, not on its frequency; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity.