Search results
Results from the WOW.Com Content Network
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
His arithmetic explains the division of fractions and the extraction of square and cubic roots (square root of 57,342; cubic root of 3, 652, 296) in an almost modern manner. [2] 12th century — Indian numerals have been modified by Persian mathematicians al-Khwārizmī to form the modern Arabic numerals (used universally in the modern world.)
The topics covered include fractions, square roots, arithmetic and geometric progressions, solutions of simple equations, ... (PDF). Indian J. History Sci. 11 (2): ...
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales.
According to George Sarton, "The Thiende was the earliest treatise deliberately devoted to the study of decimal fractions, and STEVIN's account is the earliest account of them. Hence, even if decimal fractions were used previously by other men, it was STEVIN – and no other – who introduced them into the mathematical domain.
An interesting feature of ancient Egyptian mathematics is the use of unit fractions. [7] The Egyptians used some special notation for fractions such as 1 / 2 , 1 / 3 and 2 / 3 and in some texts for 3 / 4 , but other fractions were all written as unit fractions of the form 1 / n or sums of such unit ...
Here thus in the history of equations the first letters of the alphabet became indicatively known as coefficients, while the last letters as unknown terms (an incerti ordinis). In algebraic geometry , again, a similar rule was to be observed: the last letters of the alphabet came to denote the variable or current coordinates .