Search results
Results from the WOW.Com Content Network
The process of shredding was used successfully several times during the analysis phase of the human genome project. [1] The first phase of the human genome project is called the "shotgun phase". During this phase human chromosomes are 1). Divided into DNA segments of equal size and then 2). Subdivided into even smaller DNA segments.
Electromagnetic radiation consists of photons, which can be thought of as energy packets, traveling in the form of a wave. [4] Examples of electromagnetic radiation includes X-rays and gamma rays (see photo "Types of Electromagnetic Radiation"). [4] These types of radiation can easily penetrate the human body because of high energy. [4]
Radiation can have harmful effects on solid materials as it can degrade their properties so that they are no longer mechanically sound. This is of special concern as it can greatly affect their ability to perform in nuclear reactors and is the emphasis of radiation material science , which seeks to mitigate this danger.
Taking an X-ray image with early Crookes tube apparatus, late 1800s. Radiography's origins and fluoroscopy's origins can both be traced to 8 November 1895, when German physics professor Wilhelm Conrad Röntgen discovered the X-ray and noted that, while it could pass through human tissue, it could not pass through bone or metal. [1]
Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.
Possible acute and late risks to the CNS from galactic cosmic rays (GCRs) and solar proton events (SPEs) are a documented concern for human exploration of the Solar System. [ 1 ] [ 2 ] [ 3 ] In the past, the risks to the CNS of adults who were exposed to low to moderate doses of ionizing radiation (0 to 2 Gy (Gray) (Gy = 100 rad )) have not ...
Unprotected experiments in the U.S. in 1896 with an early X-ray tube (Crookes tube), when the dangers of radiation were largely unknown.[1]The history of radiation protection begins at the turn of the 19th and 20th centuries with the realization that ionizing radiation from natural and artificial sources can have harmful effects on living organisms.
The history of X-ray microscopy can be traced back to the early 20th century. After the German physicist Röntgen discovered X-rays in 1895, scientists soon illuminated an object using an X-ray point source and captured the shadow images of the object with a resolution of several micrometers. [2]