Search results
Results from the WOW.Com Content Network
Tunneling applications include the tunnel diode, [5] quantum computing, flash memory, and the scanning tunneling microscope. Tunneling limits the minimum size of devices used in microelectronics because electrons tunnel readily through insulating layers and transistors that are thinner than about 1 nm.
In relativistic quantum mechanics, the Klein paradox (also known as Klein tunneling) is a quantum phenomenon related to particles encountering high-energy potential barriers. It is named after physicist Oskar Klein who discovered in 1929. [ 1 ]
The operation of a scanning tunneling microscope (STM) relies on this tunneling effect. In that case, the barrier is due to the gap between the tip of the STM and the underlying object. Since the tunnel current depends exponentially on the barrier width, this device is extremely sensitive to height variations on the examined sample.
In physics, tunnel ionization is a process in which electrons in an atom (or a molecule) tunnel through the potential barrier and escape from the atom (or molecule). In an intense electric field, the potential barrier of an atom (molecule) is distorted drastically. Therefore, as the length of the barrier that electrons have to pass decreases ...
Gamow [3] first solved the one-dimensional case of quantum tunneling using the WKB approximation.Considering a wave function of a particle of mass m, we take area 1 to be where a wave is emitted, area 2 the potential barrier which has height V and width l (at < <), and area 3 its other side, where the wave is arriving, partly transmitted and partly reflected.
The Lippmann–Schwinger equation for the scattering state | with a momentum p and out-going (+) or in-going (−) boundary conditions is | = | + | , where is the free particle Green's function, is a positive infinitesimal quantity, and the interaction potential.
A finite ray or real ray is a ray that is traced without making the paraxial approximation. [12] [13] A parabasal ray is a ray that propagates close to some defined "base ray" rather than the optical axis. [14] This is more appropriate than the paraxial model in systems that lack symmetry about the optical axis.
Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough (typically a few nanometres ), electrons can tunnel from one ferromagnet into the other.