Search results
Results from the WOW.Com Content Network
Cauchy–Schwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality:
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
holds for every graph . [2] A recent observation [6] proves that any linear homomorphism density inequality is a consequence of the positive semi-definiteness of a certain infinite matrix, or to the positivity of a quantum graph; in other words, any such inequality would follow from applications of the Cauchy-Schwarz Inequality. [2]
This can be concisely written as the matrix inequality , where A is an m×n matrix, x is an n×1 column vector of variables, and b is an m×1 column vector of constants. [citation needed] In the above systems both strict and non-strict inequalities may be used. Not all systems of linear inequalities have solutions.
Hence (x + y) 2 ≥ 4xy, with equality when (x − y) 2 = 0, i.e. x = y. The AM–GM inequality then follows from taking the positive square root of both sides and then dividing both sides by 2. For a geometrical interpretation, consider a rectangle with sides of length x and y; it has perimeter 2x + 2y and area xy.
A graphical "proof" of Jensen's inequality for the probabilistic case. The dashed curve along the X axis is the hypothetical distribution of X, while the dashed curve along the Y axis is the corresponding distribution of Y values. Note that the convex mapping Y(X) increasingly "stretches" the distribution for increasing values of X.
In graph theory, an area of mathematics, common graphs belong to a branch of extremal graph theory concerning inequalities in homomorphism densities.Roughly speaking, is a common graph if it "commonly" appears as a subgraph, in a sense that the total number of copies of in any graph and its complement ¯ is a large fraction of all possible copies of on the same vertices.
Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...