Search results
Results from the WOW.Com Content Network
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
Thus we can find a graph with at least e − cr(G) edges and n vertices with no crossings, and is thus a planar graph. But from Euler's formula we must then have e − cr(G) ≤ 3n, and the claim follows. (In fact we have e − cr(G) ≤ 3n − 6 for n ≥ 3). To obtain the actual crossing number inequality, we now use a probabilistic argument.
In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.
and that the equality holds if and only if the curve is a circle. There are, in fact, two ways to measure the spherical area enclosed by a simple closed curve, but the inequality is symmetric with the respect to taking the complement. This inequality was discovered by Paul Lévy (1919) who also extended it to higher dimensions and general ...
A cycle graph in which the distances disobey Ptolemy's inequality. Ptolemy's inequality holds more generally in any inner product space, [1] [9] and whenever it is true for a real normed vector space, that space must be an inner product space. [9] [10] For other types of metric space, the inequality may or may not be
Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple. In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real number coordinates.
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than (<) and greater than (>).
Cauchy–Schwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality: