Search results
Results from the WOW.Com Content Network
Resonance structures of 3c-2e bond in diborane. The monomer BH 3 is unstable since the boron atom has an empty p-orbital. A B−H−B 3-center-2-electron bond is formed when a boron atom shares electrons with a B−H bond on another boron atom. The two electrons (corresponding to one bond) in a B−H−B bonding molecular orbital are spread out ...
[2] [3] The atoms in molecules, crystals, metals and other forms of matter are held together by chemical bonds, which determine the structure and properties of matter. All bonds can be described by quantum theory, but, in practice, simplified rules and other theories allow chemists to predict the strength, directionality, and polarity of bonds. [4]
In organic chemistry, a vinyl group (abbr. Vi; [1] IUPAC name: ethenyl group [2]) is a functional group with the formula −CH=CH 2. It is the ethylene (IUPAC name: ethene) molecule (H 2 C=CH 2) with one fewer hydrogen atom. The name is also used for any compound containing that group, namely R−CH=CH 2 where R is any other group of atoms.
One of Pauling's examples is olivine, M 2 SiO 4, where M is a mixture of Mg 2+ at some sites and Fe 2+ at others. The structure contains distinct SiO 4 tetrahedra which do not share any oxygens (at corners, edges or faces) with each other. The lower-valence Mg 2+ and Fe 2+ cations are surrounded by polyhedra which do share oxygens.
Structural chemistry is a part of chemistry and deals with spatial structures of molecules (in the gaseous, liquid or solid state) and solids (with extended structures that cannot be subdivided into molecules). For structure elucidation [1] a range of different methods is used.
A chemical structure of a molecule is a spatial arrangement of its atoms and their chemical bonds. Its determination includes a chemist 's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid.
Another example is O(SiH 3) 2 with an Si–O–Si angle of 144.1°, which compares to the angles in Cl 2 O (110.9°), (CH 3) 2 O (111.7°), and N(CH 3) 3 (110.9°). [24] Gillespie and Robinson rationalize the Si–O–Si bond angle based on the observed ability of a ligand's lone pair to most greatly repel other electron pairs when the ligand ...
Physical chemistry, in contrast to chemical physics, is predominantly (but not always) a supra-molecular science, as the majority of the principles on which it was founded relate to the bulk rather than the molecular or atomic structure alone (for example, chemical equilibrium and colloids).