Search results
Results from the WOW.Com Content Network
Let the circle on AF as diameter cut OB in K, and let the circle whose centre is E and radius EK cut OA in N 3 and N 5; then if ordinates N 3 P 3, N 5 P 5 are drawn to the circle, the arcs AP 3, AP 5 will be 3/17 and 5/17 of the circumference." The point N 3 is very close to the center point of Thales' theorem over AF.
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [4] It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. [5]
In contrast, by the Lindemann–Weierstrass theorem, the sine or cosine of any non-zero algebraic number is always transcendental. [4] The real part of any root of unity is a trigonometric number. By Niven's theorem, the only rational trigonometric numbers are 0, 1, −1, 1/2, and −1/2. [5]
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
360 is a triangular matchstick number. [4] 360 is the product of the first two unitary perfect numbers: [5] = There are 360 even permutations of 6 elements. They form the alternating group A 6. A turn is divided into 360 degrees for angular measurement. 360° = 2 π rad is also called a round angle.
17 is a Leyland number [3] and Leyland prime, [4] using 2 & 3 (2 3 + 3 2) and using 4 and 5, [5] [6] using 3 & 4 (3 4 - 4 3). 17 is a Fermat prime. 17 is one of six lucky numbers of Euler. [7] Since seventeen is a Fermat prime, regular heptadecagons can be constructed with a compass and unmarked ruler.
In other words, the n th digit of this number is 1 only if n is one of 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers ...
[18] [19] Today, the degree, 1 / 360 of a turn, or the mathematically more convenient radian, 1 / 2 π of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions . [ 23 ]