Search results
Results from the WOW.Com Content Network
This undirected cyclic graph can be described by the three unordered lists {b, c}, {a, c}, {a, b}. In graph theory and computer science, an adjacency list is a collection of unordered lists used to represent a finite graph. Each unordered list within an adjacency list describes the set of neighbors of a particular vertex in the graph.
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
In 2023, Haeupler, Rozhoň, Tětek, Hladík, and Tarjan (one of the inventors of the 1984 heap), proved that, for this sorting problem on a positively-weighted directed graph, a version of Dijkstra's algorithm with a special heap data structure has a runtime and number of comparisons that is within a constant factor of optimal among comparison ...
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.
The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
A parallel for the adjacency matrix of a hypergraph can be drawn from the adjacency matrix of a graph. In the case of a graph, the adjacency matrix is a square matrix which indicates whether pairs of vertices are adjacent.