enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.

  3. Ternary search - Wikipedia

    en.wikipedia.org/wiki/Ternary_search

    def ternary_search (f, left, right, absolute_precision)-> float: """Find maximum of unimodal function f() within [left, right]. To find the minimum, reverse the if/else statement or reverse the comparison. """ while abs (right-left) >= absolute_precision: left_third = left + (right-left) / 3 right_third = right-(right-left) / 3 if f (left_third) < f (right_third): left = left_third else: right ...

  4. Powell's method - Wikipedia

    en.wikipedia.org/wiki/Powell's_method

    Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs. The caller passes in the initial point.

  5. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  6. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Known generically as extremum, [b] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function. [1] [2] [3] Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.

  7. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  8. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The gradient descent can take many iterations to compute a local minimum with a required accuracy, if the curvature in different directions is very different for the given function. For such functions, preconditioning, which changes the geometry of the space to shape the function level sets like concentric circles, cures the slow convergence ...

  9. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    Function minimization at minima.hpp with an example locating function minima. Root finding implements the newer TOMS748, a more modern and efficient algorithm than Brent's original, at TOMS748, and Boost.Math rooting finding that uses TOMS748 internally with examples. The Optim.jl package implements the algorithm in Julia (programming language)