Search results
Results from the WOW.Com Content Network
The perichondrium (from Greek περί, peri, 'around' and χόνδρος, chondros, 'cartilage') is a layer of dense irregular connective tissue that surrounds the cartilage of developing bone. It consists of two separate layers: an outer fibrous layer and inner chondrogenic layer.
This type of connective tissue is found mostly in the reticular layer (or deep layer) of the dermis. [3] It is also in the sclera and in the deeper skin layers. Due to high portions of collagenous fibers, dense irregular connective tissue provides strength, making the skin resistant to tearing by stretching forces from different directions.
Perimysium is a sheath of dense irregular connective tissue that groups muscle fibers into bundles (anywhere between 10 and 100 or more) or fascicles. Studies of muscle physiology suggest that the perimysium plays a role in transmitting lateral contractile movements .
The fibrous layer is of dense irregular connective tissue, containing fibroblasts, while the cambium layer is highly cellular containing progenitor cells that develop into osteoblasts. [3] These osteoblasts are responsible for increasing the width of a long bone (the length of a long bone is controlled by the epiphyseal plate ) and the overall ...
Within adults and developing adults, most chondroblasts are located in the perichondrium. This is a thin layer of connective tissue which protects cartilage and is where chondroblasts help to expand cartilage size whenever prompted to by hormones such as GH, TH, and glycosaminoglycans. [2]
The cells which make up stroma tissues serve as a matrix in which the other cells are embedded. [2] Stroma is made of various types of stromal cells. Examples of stroma include: stroma of iris; stroma of cornea; stroma of ovary; stroma of thyroid gland; stroma of thymus; stroma of bone marrow; lymph node stromal cell; multipotent stromal cell ...
The Haversian canals surround blood vessels and nerve cells throughout bones and communicate with osteocytes (contained in spaces within the dense bone matrix called lacunae) through connections called canaliculi. This unique arrangement is conducive to mineral salt deposits and storage which gives bone tissue its strength.
Intra-cellular features are characteristic of a synthetically active cell. The cell density of full-thickness, human, adult, femoral condyle cartilage is maintained at 14.5 (±3.0) × 10 3 cells/ mm 2 from age 20 to 30 years. Although chondrocyte senescence occurs with aging, mitotic figures are not seen in normal adult articular cartilage.