enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Median - Wikipedia

    en.wikipedia.org/wiki/Median

    The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode. The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean. The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter.

  3. Weighted median - Wikipedia

    en.wikipedia.org/wiki/Weighted_median

    The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures , the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal.

  4. Median of medians - Wikipedia

    en.wikipedia.org/wiki/Median_of_medians

    Median of medians finds an approximate median in linear time. Using this approximate median as an improved pivot, the worst-case complexity of quickselect reduces from quadratic to linear, which is also the asymptotically optimal worst-case complexity of any selection algorithm. In other words, the median of medians is an approximate median ...

  5. Median absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Median_absolute_deviation

    The median absolute deviation is a measure of statistical dispersion. Moreover, the MAD is a robust statistic , being more resilient to outliers in a data set than the standard deviation . In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it.

  6. Five-number summary - Wikipedia

    en.wikipedia.org/wiki/Five-number_summary

    Splitting the observations either side of the median gives two groups of four observations. The median of the first group is the lower or first quartile, and is equal to (0 + 1)/2 = 0.5. The median of the second group is the upper or third quartile, and is equal to (27 + 61)/2 = 44. The smallest and largest observations are 0 and 63.

  7. k-medians clustering - Wikipedia

    en.wikipedia.org/wiki/K-medians_clustering

    This relates directly to the k-median problem which is the problem of finding k centers such that the clusters formed by them are the most compact with respect to the 2-norm. Formally, given a set of data points x , the k centers c i are to be chosen so as to minimize the sum of the distances from each x to the nearest c i .

  8. Geometric median - Wikipedia

    en.wikipedia.org/wiki/Geometric_median

    For the 1-dimensional case, the geometric median coincides with the median.This is because the univariate median also minimizes the sum of distances from the points. (More precisely, if the points are p 1, ..., p n, in that order, the geometric median is the middle point (+) / if n is odd, but is not uniquely determined if n is even, when it can be any point in the line segment between the two ...

  9. Hodges–Lehmann estimator - Wikipedia

    en.wikipedia.org/wiki/Hodges–Lehmann_estimator

    In statistics, the Hodges–Lehmann estimator is a robust and nonparametric estimator of a population's location parameter.For populations that are symmetric about one median, such as the Gaussian or normal distribution or the Student t-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median.