Search results
Results from the WOW.Com Content Network
Cycle detection is the problem of finding i and j, given f and x 0. Several algorithms are known for finding cycles quickly and with little memory. Robert W. Floyd's tortoise and hare algorithm moves two pointers at different speeds through the
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...
The Dutch national flag problem [1] is a computational problem proposed by Edsger Dijkstra. [2] The flag of the Netherlands consists of three colors: red, white, and blue. Given balls of these three colors arranged randomly in a line (it does not matter how many balls there are), the task is to arrange them such that all balls of the same color ...
The link field at A would be 0⊕B. An additional instruction is needed in the above sequence after the two XOR operations to detect a zero result in developing the address of the current item, A list end point can be made reflective by making the link pointer be zero. A zero pointer is a mirror. (The XOR of the left and right neighbor ...
The picture shows two strings where the problem has multiple solutions. Although the substring occurrences always overlap, it is impossible to obtain a longer common substring by "uniting" them. The strings "ABABC", "BABCA" and "ABCBA" have only one longest common substring, viz. "ABC" of length 3.
In computer science, the longest palindromic substring or longest symmetric factor problem is the problem of finding a maximum-length contiguous substring of a given string that is also a palindrome. For example, the longest palindromic substring of "bananas" is "anana".
The jump pointer algorithm [1] pre-processes a tree in O(n log n) time and answers level ancestor queries in O(log n) time. The jump pointer algorithm associates up to log n pointers to each vertex of the tree. These pointers are called jump pointers because they jump up the tree towards the root of the tree.
The pointers are sorted by the value that they point to. In an O(k) preprocessing step the heap is created using the standard heapify procedure. Afterwards, the algorithm iteratively transfers the element that the root pointer points to, increases this pointer and executes the standard decrease key procedure upon the root element.