Search results
Results from the WOW.Com Content Network
Pre-ignition and engine knock both sharply increase combustion chamber temperatures. Consequently, either effect increases the likelihood of the other effect occurring, and both can produce similar effects from the operator's perspective, such as rough engine operation or loss of performance due to operational intervention by a powertrain ...
Pressure in cylinder pattern in dependence on ignition timing: (a) - misfire, (b) too soon, (c) optimal, (d) too late. In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.
In spark-ignition internal combustion engines, knocking (also knock, detonation, spark knock, pinging or pinking) occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but when one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front.
Low-speed pre-ignition (LSPI), also known as stochastic pre-ignition (SPI), [1] is a pre-ignition event that occurs in gasoline vehicle engines when there is a premature ignition of the main fuel charge. [2] LSPI is most common in certain turbocharged direct-injection vehicles operating in low-speed and high-load driving conditions. [3]
This sensor is one of the two most important sensors in modern-day engines, together with the camshaft position sensor. As the fuel injection (diesel engines) or spark ignition (petrol engines) is usually timed from the crank sensor position signal, failing sensor will cause an engine not to start or will cut out while running.
“That hormone change at perimenopause seemed to be another ignition for my body feeling out of control and the reemergence of a lot of eating disorder thoughts and cognition,” says Nikki ...
The ignition source of a diesel engine is the heat generated by the compression of the air in the cylinder, rather than a spark as in gasoline engines. The dieseling phenomenon occurs not just because the compression ratio is sufficient to cause auto-ignition of the fuel, but also because a hot spot inside the cylinder (spark plug electrode ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!