Search results
Results from the WOW.Com Content Network
Both have icosahedral symmetry. The term "regular icosahedron" generally refers to the convex variety, while the nonconvex form is called a great icosahedron.
Icosahedral graph. Every Platonic graph, including the icosahedral graph, is a polyhedral graph. This means that they are planar graphs, graphs that can be drawn in the plane without crossing its edges; and they are 3-vertex-connected, meaning that the removal of any two of its vertices leaves a connected subgraph.
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation, Coxeter notation, [1] orbifold notation, [2] and order.
The icosahedral symmetry of the sphere generates 7 uniform polyhedra, and a 1 more by alternation. Only one is repeated from the tetrahedral and octahedral symmetry table above. The icosahedral symmetry is represented by a fundamental triangle (5 3 2) counting the mirrors at each vertex.
Icosahedral capsid of an adenovirus Virus capsid T-numbers. The icosahedral structure is extremely common among viruses. The icosahedron consists of 20 triangular faces delimited by 12 fivefold vertexes and consists of 60 asymmetric units. Thus, an icosahedral virus is made of 60N protein subunits.
The truncated icosahedral graph. According to Steinitz's theorem, the skeleton of a truncated icosahedron, like that of any convex polyhedron, can be represented as a polyhedral graph, meaning a planar graph (one that can be drawn without crossing edges) and 3-vertex-connected graph (remaining connected whenever two of its vertices are removed ...
Nevertheless, there is a common feature observed in most quasicrystal-forming liquid alloys or their undercooled liquids: a local icosahedral order. The icosahedral order is in equilibrium in the liquid state for the stable quasicrystals, whereas the icosahedral order prevails in the undercooled liquid state for the metastable quasicrystals.