Search results
Results from the WOW.Com Content Network
However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes.
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
mg: milligram: 10 3 g kg: kilogram: 10 −6 g μg: microgram: 10 6 g Mg: megagram: 10 −9 g ng: nanogram: 10 9 g Gg: gigagram: 10 −12 g pg: picogram: 10 12 g Tg: teragram: 10 −15 g fg femtogram 10 15 g Pg petagram 10 −18 g ag attogram 10 18 g Eg exagram 10 −21 g zg zeptogram 10 21 g Zg zettagram 10 −24 g yg yoctogram 10 24 g Yg ...
1.0 long cwt (110 lb; 51 kg) short hundredweight: short cwt short cwt 1.0 short cwt (100 lb; 45 kg) long quarter: long qtr long qtr 1.0 long qtr (28 lb; 13 kg) short quarter: short qtr short qtr 1.0 short qtr (25 lb; 11 kg) stone: st st 14 lb used mostly in the British Commonwealth except Canada 1.0 st (14 lb; 6.4 kg) st kg. st kg lb; st lb
Units of textile measurement#Units: kg/cm: kg/cm: 100: kilogram per centimetre: kilograms per centimetre: kilogram per centimeter: kilograms per centimeter: lb/yd: Linear density: kg/m: kg/m: 1: kilogram per metre: kilograms per metre: kilogram per meter: kilograms per meter: lb/yd: Linear density: lb/ft: lb/ft: 4535.9237/3048: pound per foot ...
In the metric system, a microgram or microgramme is a unit of mass equal to one millionth (1 × 10 −6) of a gram. The unit symbol is μg according to the International System of Units (SI); the recommended symbol in the United States and United Kingdom when communicating medical information is mcg .
The base units are defined in terms of the defining constants. For example, the kilogram is defined by taking the Planck constant h to be 6.626 070 15 × 10 −34 J⋅s, giving the expression in terms of the defining constants [1]: 131 1 kg = (299 792 458) 2 / (6.626 070 15 × 10 −34)(9 192 631 770) h Δν Cs / c 2 .
Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. According to Schadow and McDonald, [ 1 ] metric units, in general, are those units "defined 'in the spirit' of the metric system, that emerged in late 18th century France and was rapidly adopted by scientists and engineers.