Search results
Results from the WOW.Com Content Network
In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that b x = a.Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
The open (closed) upper half-space is the half-space of all (x 1, x 2, ..., x n) such that x n > 0 (≥ 0). The open (closed) lower half-space is defined similarly, by requiring that x n be negative (non-positive). A half-space may be specified by a linear inequality, derived from the linear equation that specifies the defining hyperplane. A ...
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table.
Semi-log plot of the Internet host count over time shown on a logarithmic scale. A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences between the magnitudes of the numbers involved.
The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula ′ where ′ is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f ; that is, the infinitesimal absolute change in f, namely f ′ , {\displaystyle f',} scaled by the current ...