Search results
Results from the WOW.Com Content Network
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]
In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.
Cyclic Quadrilateral. Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one ...
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Play free online Puzzle games and chat with others in real-time and with NO downloads and NOTHING to install.
GeoGebra (a portmanteau of geometry and algebra) is an interactive geometry, algebra, statistics and calculus application, intended for learning and teaching mathematics and science from primary school to university level.
No download needed, play free card games right now! Browse and play any of the 40+ online card games for free against the AI or against your friends. Enjoy classic card games such as Hearts, Gin ...
Any square can be inscribed in a circle whose center is the center of the square. If the common length of its four sides is equal to a {\displaystyle a} then the length of the diagonal is equal to a 2 {\displaystyle a{\sqrt {2}}} according to the Pythagorean theorem , and Ptolemy's relation obviously holds.