Search results
Results from the WOW.Com Content Network
Whereas the peritubular capillaries surround the cortical parts of the tubules, the vasa recta go into the medulla and are closer to the loop of Henle, [1] [2] and leave to ascend to the cortex. [3] [4] Terminations of the vasa recta form the straight venules, branches from the plexuses at the apices of the medullary pyramids.
Note 3: The efferent arterioles do not directly drain into the interlobular vein, but rather they go to the peritubular capillaries first. The efferent arterioles of the juxtamedullary nephron drain into the vasa recta.
This results in a smaller capillary hydrostatic pressure, which causes an increased absorption of sodium ions into the vasa recta at the proximal tubule. Hence, a decrease in blood pressure results in less sodium chloride present at the distal tubule, where the macula densa is located.
When renal blood flow is reduced (indicating hypotension) or there is a decrease in sodium or chloride ion concentration, the macula densa of the distal tubule releases prostaglandins (mainly PGI2 and PGE2) and nitric oxide, which cause the juxtaglomerular cells lining the afferent arterioles to release renin, activating the renin–angiotensin–aldosterone system, to increase blood pressure ...
The descending vasa recta, ascending vasa recta vessels, and the loop of Henle together form the countercurrent system of the kidney. In the afferent arteriole, blood is supplied at high pressure, which promotes filtration, and in the efferent arteriole, it is at low pressure, which promotes reabsorption .
Blood tests are also used to assess kidney function. These include tests that are intended to directly measure the function of the kidneys, as well as tests that assess the function of the kidneys by looking for evidence of problems associated with abnormal function. One of the measures of kidney function is the glomerular filtration rate (GFR).
In renal physiology, renal blood flow (RBF) is the volume of blood delivered to the kidneys per unit time. In humans, the kidneys together receive roughly 20 - 25% of cardiac output, amounting to 1.2 - 1.3 L/min in a healthy adult. [1]
A simple means of estimating renal function is to measure pH, blood urea nitrogen, creatinine, and basic electrolytes (including sodium, potassium, chloride, and bicarbonate). As the kidney is the most important organ in controlling these values, any derangement in these values could suggest renal impairment.