Search results
Results from the WOW.Com Content Network
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae. Published by the Chudnovsky brothers in 1988, [ 1 ] it was used to calculate π to a billion decimal places.
This category presents articles pertaining to the calculation of Pi to arbitrary precision. Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total.
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
The search procedure consists of choosing a range of parameter values for s, b, and m, evaluating the sums out to many digits, and then using an integer relation-finding algorithm (typically Helaman Ferguson's PSLQ algorithm) to find a sequence A that adds up those intermediate sums to a well-known constant or perhaps to zero.
Since the 1980s, his series have become the basis for the fastest algorithms currently used by Yasumasa Kanada and the Chudnovsky brothers to compute π. 1946 D. F. Ferguson: Made use of a desk calculator [24] 620: 1947 Ivan Niven: Gave a very elementary proof that π is irrational: January 1947 D. F. Ferguson: Made use of a desk calculator [24 ...
where C is the circumference of an ellipse with semi-major axis a and semi-minor axis b and , are the arithmetic and geometric iterations of (,), the arithmetic-geometric mean of a and b with the initial values = and =.
3. Keebler Fudge Magic Middles. Neither the chocolate fudge cream inside a shortbread cookie nor versions with peanut butter or chocolate chip crusts survived.
A spigot algorithm is an algorithm for computing the value of a transcendental number (such as π or e) that generates the digits of the number sequentially from left to right providing increasing precision as the algorithm proceeds. Spigot algorithms also aim to minimize the amount of intermediate storage required.