Search results
Results from the WOW.Com Content Network
By the Upper Devonian period, the fin-limb transition as well as other skeletal changes such as gill arch reduction, opercular series loss, mid-line fin loss, and scale reduction were already completed in many aquatic organisms. [3] As aquatic tetrapods began their transition to land, several skeletal changes are thought to have occurred to ...
Several groups of tetrapods have undergone secondary aquatic adaptation, an evolutionary transition from being purely terrestrial to living at least part of the time in water. These animals are called "secondarily aquatic" because although their ancestors lived on land for hundreds of millions of years, they all originally descended from ...
Tulerpeton is one of the early transition tetrapods – a marine animal capable of living on land. The separation of the pectoral-shoulder girdle from the head allowed the head to move up and down, and the strengthening of the legs and arms allowed the early tetrapods to propel themselves on land. Tulerpeton is important in the study of dactyly.
The evolution of tetrapods began about 400 million years ago in the Devonian Period with the earliest tetrapods evolved from lobe-finned fishes. [1] Tetrapods (under the apomorphy-based definition used on this page) are categorized as animals in the biological superclass Tetrapoda, which includes all living and extinct amphibians, reptiles, birds, and mammals.
The vertebrate land invasion refers to the transition of vertebrate animals from being aquatic/semiaquatic to predominantly terrestrial during the Late Devonian period. This transition allowed some vertebrates to escape competitive pressure from other aquatic animals and explore niches on land, [1] which eventually established the vertebrates as the dominant terrestrial phylum.
Phylogenetic analysis has shown Ichthyostega is intermediate between other primitive stegocephalian stem-tetrapods. The evolutionary tree of early stegocephalians below follows the results of one such analysis performed by Swartz in 2012. [9] Simplified phylogeny of the fish–tetrapod transition.
The early tetrapod Acanthostega had at least three and probably four pairs of gill bars, each containing deep grooves in the place where one would expect to find the afferent branchial artery. This strongly suggests that functional gills were present. [96] Some aquatic temnospondyls retained internal gills at least into the early Jurassic. [97]
In most analyses, the group as traditionally imagined is actually an evolutionary grade, the last "fishes" of the tetrapod stem line, though Chang and Yu (1997) treated them as the sister clade to Tetrapoda. [15] [16] Elpistostegalia was re-defined as a clade containing Panderichthys and tetrapods. [7] Below is a cladogram from Swartz, 2012. [7]