Search results
Results from the WOW.Com Content Network
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).
While this formulation allows also fractional variable values, in this special case, the LP always has an optimal solution where the variables take integer values. This is because the constraint matrix of the fractional LP is totally unimodular – it satisfies the four conditions of Hoffman and Gale.
Multi-objective linear programming is a subarea of mathematical optimization. A multiple objective linear program (MOLP) is a linear program with more than one objective function. An MOLP is a special case of a vector linear program .
There is a close connection between linear programming problems, eigenequations, and von Neumann's general equilibrium model. The solution to a linear programming problem can be regarded as a generalized eigenvector. The eigenequations of a square matrix are as follows:
Mixed-integer linear programming (MILP) involves problems in which only some of the variables, , are constrained to be integers, while other variables are allowed to be non-integers. Zero–one linear programming (or binary integer programming ) involves problems in which the variables are restricted to be either 0 or 1.
In operations research, the Big M method is a method of solving linear programming problems using the simplex algorithm.The Big M method extends the simplex algorithm to problems that contain "greater-than" constraints.
The above formulation's quantity constraints are minimum constraints (at least the given amount of each order must be produced, but possibly more). When c i = 1 {\displaystyle c_{i}=1} , the objective minimises the number of utilised master items and, if the constraint for the quantity to be produced is replaced by equality, it is called the ...
The use of randomization to improve the time bounds for low dimensional linear programming and related problems was pioneered by Clarkson and by Dyer & Frieze (1989). The definition of LP-type problems in terms of functions satisfying the axioms of locality and monotonicity is from Sharir & Welzl (1992) , but other authors in the same timeframe ...