Search results
Results from the WOW.Com Content Network
When it is completely settled, so that macroscopic change is no longer detectable, it is in its own thermal equilibrium. It is not implied that it is necessarily in other kinds of internal equilibrium. For example, it is possible that a body might reach internal thermal equilibrium but not be in internal chemical equilibrium; glass is an ...
A prime example of this irreversibility is the transfer of heat by conduction or radiation. It was known long before the discovery of the notion of entropy that when two bodies, initially of different temperatures, come into direct thermal connection, then heat immediately and spontaneously flows from the hotter body to the colder one.
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.
This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamic systems under consideration. Systems are said to be in equilibrium if the small, random exchanges between them (e.g. Brownian motion) do not lead to a net change in energy. This law is tacitly assumed in every measurement of temperature.
An equilibrium state is mathematically ascertained by seeking the extrema of a thermodynamic potential function, whose nature depends on the constraints imposed on the system. For example, a chemical reaction at constant temperature and pressure will reach equilibrium at a minimum of its components' Gibbs free energy and a maximum of their entropy.
If it is defined that a thermodynamic system is in thermal equilibrium with itself (i.e., thermal equilibrium is reflexive), then the zeroth law may be stated as follows: If a body C, be in thermal equilibrium with two other bodies, A and B, then A and B are in thermal equilibrium with one another. [8]
Thermodynamic equilibrium is a notion of thermodynamics with axiomatic status referring to an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls.
Examples of thermalisation include: the achievement of equilibrium in a plasma. [1] the process undergone by high-energy neutrons as they lose energy by collision with a moderator. [2] the process of heat or phonon emission by charge carriers in a solar cell, after a photon that exceeds the semiconductor band gap energy is absorbed. [3]