Search results
Results from the WOW.Com Content Network
A strict total order on a set is a strict partial order on in which any two distinct elements are comparable. That is, a strict total order is a binary relation < {\displaystyle <} on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :
A strict weak order that is trichotomous is called a strict total order. [14] The total preorder which is the inverse of its complement is in this case a total order . For a strict weak order < {\displaystyle \,<\,} another associated reflexive relation is its reflexive closure , a (non-strict) partial order ≤ . {\displaystyle \,\leq .}
The usual strict total order on N, "less than" (denoted by "<"), can be defined in terms of addition via the rule x < y ↔ ∃z (Sz + x = y). Equivalently, we get a definitional conservative extension of Q by taking "<" as primitive and adding this rule as an eighth axiom; this system is termed " Robinson arithmetic R " in Boolos, Burgess ...
A strict order on a set is a homogeneous relation arising in order theory. In 1951 Jacques Riguet adopted the ordering of an integer partition , called a Ferrers diagram , to extend ordering to binary relations in general.
In order to prove termination, a reduction ordering (>) must be found with respect to which the term x*(y+z) is greater than the term (x*y)+(x*z). This is not trivial, since the former term contains both fewer function symbols and fewer variables than the latter.
Similarly, a strict partial order that is connected is a strict total order. A relation is a total order if and only if it is both a partial order and strongly connected. A relation is a strict total order if, and only if, it is a strict partial order and just connected. A strict total order can never be strongly connected (except on an empty ...
Partial order – an antisymmetric preorder; Total preorder – a connected (formerly called total) preorder; Equivalence relation – a symmetric preorder; Strict weak ordering – a strict partial order in which incomparability is an equivalence relation; Total ordering – a connected (total), antisymmetric, and transitive relation
A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents).