enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Renal compensation - Wikipedia

    en.wikipedia.org/wiki/Renal_compensation

    Renal compensation is a mechanism by which the kidneys can regulate the plasma pH. It is slower than respiratory compensation , but has a greater ability to restore normal values. Kidneys maintain the acid-base balance through two mechanisms: (1) the secretion of H + ions into the urine (from the blood) and (2) the reabsorption of bicarbonate ...

  3. Metabolic acidosis - Wikipedia

    en.wikipedia.org/wiki/Metabolic_acidosis

    Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]

  4. Winters's formula - Wikipedia

    en.wikipedia.org/wiki/Winters's_formula

    It is slower than the initial bicarbonate buffer system in the blood, but faster than renal compensation. Respiratory compensation usually begins within minutes to hours, but alone will not completely return arterial pH to a normal value (7.4). Winter's Formula quantifies the amount of respiratory compensation during metabolic acidosis. [8 ...

  5. Base excess - Wikipedia

    en.wikipedia.org/wiki/Base_excess

    metabolic acidosis, or respiratory alkalosis with renal compensation if too low (less than −2 mEq/L) Blood pH is determined by both a metabolic component, measured by base excess, and a respiratory component, measured by PaCO 2 (partial pressure of carbon dioxide). Often a disturbance in one triggers a partial compensation in the other.

  6. Delta ratio - Wikipedia

    en.wikipedia.org/wiki/Delta_Ratio

    When this happens the numerator is large, the denominator is small, and the result is a delta ratio which is high (>2). This means a combined high anion gap metabolic acidosis and a pre-existing either respiratory acidosis or metabolic alkalosis (causing the high bicarbonate) – i.e. a mixed acid–base metabolic acidosis. [citation needed]

  7. Normal anion gap acidosis - Wikipedia

    en.wikipedia.org/wiki/Normal_anion_gap_acidosis

    Hyperparathyroidism – can cause hyperchloremia and increase renal bicarbonate loss, which may result in a normal anion gap metabolic acidosis. Patients with hyperparathyroidism may have a lower than normal pH, slightly decreased PaCO2 due to respiratory compensation, a decreased bicarbonate level, and a normal anion gap. [3]

  8. Acidosis - Wikipedia

    en.wikipedia.org/wiki/Acidosis

    One key to distinguish between respiratory and metabolic acidosis is that in respiratory acidosis, the CO 2 is increased while the bicarbonate is either normal (uncompensated) or increased (compensated). Compensation occurs if respiratory acidosis is present, and a chronic phase is entered with partial buffering of the acidosis through renal ...

  9. Acid–base disorder - Wikipedia

    en.wikipedia.org/wiki/Acid–base_disorder

    Acid–base imbalance is an abnormality of the human body's normal balance of acids and bases that causes the plasma pH to deviate out of the normal range (7.35 to 7.45). In the fetus, the normal range differs based on which umbilical vessel is sampled (umbilical vein pH is normally 7.25 to 7.45; umbilical artery pH is normally 7.18 to 7.38). [1]