Search results
Results from the WOW.Com Content Network
Cytokinesis (/ ˌ s aɪ t oʊ k ɪ ˈ n iː s ɪ s /) is the part of the cell division process and part of mitosis during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division in mitosis and meiosis.
The primary result of mitosis and cytokinesis is the transfer of a parent cell's genome into two daughter cells. The genome is composed of a number of chromosomes—complexes of tightly coiled DNA that contain genetic information vital for proper cell function. [ 32 ]
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
Interphase is the process through which a cell must go before mitosis, meiosis, and cytokinesis. [15] Interphase consists of three main phases: G 1 , S , and G 2 . G 1 is a time of growth for the cell where specialized cellular functions occur in order to prepare the cell for DNA replication. [ 16 ]
When G 2 is completed, the cell enters a relatively brief period of nuclear and cellular division, composed of mitosis and cytokinesis, respectively. After the successful completion of mitosis and cytokinesis, both resulting daughter cells re-enter G 1 of interphase. In the cell cycle, interphase is preceded by telophase and cytokinesis of the ...
Between the beginning of the G 1 phase (which is also after mitosis has occurred) and R, the cell is known as being in the G 1-pm subphase, or the post-mitotic phase. After R and before S, the cell is known as being in G 1-ps, or the pre S phase interval of the G 1 phase. [4]
Mitotic exit is an important transition point that signifies the end of mitosis and the onset of new G1 phase for a cell, and the cell needs to rely on specific control mechanisms to ensure that once it exits mitosis, it never returns to mitosis until it has gone through G1, S, and G2 phases and passed all the necessary checkpoints.
This image describes the final stage in mitosis, telophase. Fluorescence micrograph of a human cell in telophase showing chromosomes (DNA) in blue, microtubules in green and kinetochores in pink Telophase (from Ancient Greek τέλος ( télos ) 'end, result, completion' and φάσις (phásis) 'appearance') is the final stage in both meiosis ...