Search results
Results from the WOW.Com Content Network
One of the main reasons for using a frequency-domain representation of a problem is to simplify the mathematical analysis. For mathematical systems governed by linear differential equations, a very important class of systems with many real-world applications, converting the description of the system from the time domain to a frequency domain converts the differential equations to algebraic ...
In contrast, the most obvious trigonometric interpolation polynomial is the one in which the frequencies range from 0 to (instead of roughly / to + / as above), similar to the inverse DFT formula. This interpolation does not minimize the slope, and is not generally real-valued for real x n {\displaystyle x_{n}} ; its use is a common mistake.
The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function , of substantial importance in probability theory and statistics as well as in the study of ...
In this case, an element x of the domain is represented by an interval of the x-axis, and the corresponding value of the function, f(x), is represented by a rectangle whose base is the interval corresponding to x and whose height is f(x) (possibly negative, in which case the bar extends below the x-axis).
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...
Time domain refers to the analysis of mathematical functions, physical signals or time series of economic or environmental data, with respect to time. In the time domain, the signal or function's value is known for all real numbers , for the case of continuous time , or at various separate instants in the case of discrete time .