Search results
Results from the WOW.Com Content Network
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25] The Euclidean distance gives Euclidean space the structure of a topological space, the Euclidean topology, with the open balls (subsets of points at less than a given distance from a given point) as its neighborhoods. [26]
A Euclidean vector space is a finite-dimensional inner product space over the real numbers. [6] A Euclidean space is an affine space over the reals such that the associated vector space is a Euclidean vector space. Euclidean spaces are sometimes called Euclidean affine spaces to distinguish them from Euclidean vector spaces. [6]
Given the Cayley-Menger relations as explained above, the following section will bring forth two algorithms to decide whether a given matrix is a distance matrix corresponding to a Euclidean point set. The first algorithm will do so when given a matrix AND the dimension, , via a geometric constraint solving algorithm.
It is possible to make the spatial weight matrix a function of 'distance class': [7] where denotes the 'distance class', for example =,,, … corresponding to first, second, third etc. neighbors. In this case, functions of the spatial weight matrix become distance class dependent.
This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length. The taxicab distance is also sometimes known as rectilinear distance or L 1 distance (see L p space). [1]
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .