Search results
Results from the WOW.Com Content Network
Second, they can form a water-in-oil emulsion, in which water is the dispersed phase and oil is the continuous phase. Multiple emulsions are also possible, including a "water-in-oil-in-water" emulsion and an "oil-in-water-in-oil" emulsion. [1] Emulsions, being liquids, do not exhibit a static internal structure.
Demulsifiers, or emulsion breakers, are a class of specialty chemicals used to separate emulsions, for example, water in oil. They are commonly used in the processing of crude oil, which is typically produced along with significant quantities of saline water. This water (and salt) must be removed from the crude oil prior to refining.
Oil water separators can be designed to treat a variety of contaminants in water including free floating oil, emulsified oil, dissolved oil and suspended solids. Not all oil separator types are capable of separating all contaminants. The most common performance parameters considered are: Oil droplet size (in the feed to the separator) Oil density
A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, [1] a scientific process of separating two or more substances in order to obtain purity. At least one product mixture from the separation is enriched in one or more of the source mixture's constituents.
Meat emulsion is a two-phase system, with the dispersed phase consisting of either solid or liquid fat particles and the continuous phase being the water containing salts and dissolved, gelled and suspended proteins. Thus, they can be classified as oil-in-water emulsion.
A Ramsden emulsion, sometimes named Pickering emulsion, is an emulsion that is stabilized by solid particles (for example colloidal silica) which adsorb onto the interface between the water and oil phases. Typically, the emulsions are either water-in-oil or oil-in-water emulsions, but other more complex systems such as water-in-water, oil-in ...
Micro-emulsion: Dispersion made of water, oil, and surfactant(s) that is an isotropic and thermodynamically stable system with dispersed domain diameter varying approximately from 1 to 100 nm, usually 10 to 50 nm.
In a (W/O/W) combination, an immiscible oil phase exists between two separate water phases. In contrast, in an (O/W/O) combination the immiscible water phase separates two different oil phases. [1] Image A is (O/W) emulsion. Image B is a (W/O) emulsion. Image C is a W/O/W multiple emulsion group. Image D is a (O/W/O) multiple emulsion group.