enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if f {\displaystyle f} is a holomorphic function , real-valued on the real line, which can be evaluated at points in the complex plane near x {\displaystyle x} , then there are stable methods.

  3. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)). [10] Difference quotients are used as approximations in numerical differentiation, [8] but they have also been subject of criticism in this application. [11]

  4. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.

  5. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h ( x ) = f ( x ) g ( x ) {\displaystyle h(x)={\frac {f(x)}{g(x)}}} , where both f and g are differentiable and g ( x ) ≠ 0. {\displaystyle g(x)\neq 0.}

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    The method is based on finite differences where the differentiation operators exhibit summation-by-parts properties. Typically, these operators consist of differentiation matrices with central difference stencils in the interior with carefully chosen one-sided boundary stencils designed to mimic integration-by-parts in the discrete setting.

  7. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    To get the coefficients of the backward approximations from those of the forward ones, give all odd derivatives listed in the table in the previous section the opposite sign, whereas for even derivatives the signs stay the same. The following table illustrates this: [5]

  8. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3] The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6

  9. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation.