Search results
Results from the WOW.Com Content Network
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as
Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
An orifice with a flow coefficient of 0.59 would flow the same amount of fluid as a perfect orifice with 59% of its area or 59% of the flow of a perfect orifice with the same area (orifice plates of the type shown would have a coefficient of between 0.58 and 0.62 depending on the precise details of construction and the surrounding installation ...
The proportionality coefficient is the dimensionless "Darcy friction factor" or "flow coefficient". This dimensionless coefficient will be a combination of geometric factors such as π, the Reynolds number and (outside the laminar regime) the relative roughness of the pipe (the ratio of the roughness height to the hydraulic diameter).
The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.
The orifice meter flow calculation is based on fluid flow fundamentals (a 1st Law of Thermodynamics derivation utilizing the pipe diameter and vena contracta diameters for the continuity equation). Deviations from theoretical expectation can be assumed under the Coefficient of Discharge.
is the frictional coefficient, is the axial coordinate in the manifold, ∆X = L/n. The n is the number of ports and L the length of the manifold (Fig. 2). This is fundamental of manifold and network models. Thus, a T-junction (Fig. 3) can be represented by two Bernoulli equations according to two flow outlets.