Search results
Results from the WOW.Com Content Network
For example, in base 10, the factors of 10 1 include 2, 5, and 10. Therefore, divisibility by 2, 5, and 10 only depend on whether the last 1 digit is divisible by those divisors. The factors of 10 2 include 4 and 25, and divisibility by those only depend on the last 2 digits. Case where only the last digit(s) are removed
In propositional logic, disjunction elimination [1] [2] (sometimes named proof by cases, case analysis, or or elimination) is the valid argument form and rule of inference that allows one to eliminate a disjunctive statement from a logical proof.
Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".
This proposition is (sometimes) known as the law of the unconscious statistician because of a purported tendency to think of the aforementioned law as the very definition of the expected value of of a function g(X) and a random variable X, rather than (more formally) as a consequence of the true definition of expected value. [1]
The rule of sum is an intuitive principle stating that if there are a possible outcomes for an event (or ways to do something) and b possible outcomes for another event (or ways to do another thing), and the two events cannot both occur (or the two things can't both be done), then there are a + b total possible outcomes for the events (or total possible ways to do one of the things).
Definition [A1] states directly that 0 is a right identity. We prove that 0 is a left identity by induction on the natural number a. For the base case a = 0, 0 + 0 = 0 by definition [A1]. Now we assume the induction hypothesis, that 0 + a = a. Then
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let f {\displaystyle f} and g {\displaystyle g} be n {\displaystyle n} -times differentiable functions. The base case when n = 1 {\displaystyle n=1} claims that: ( f g ) ′ = f ′ g + f g ′ , {\displaystyle (fg)'=f'g+fg',} which is the usual product rule and is known ...