enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    These terms are used both in statistical sampling, survey design methodology and in machine learning. Oversampling and undersampling are opposite and roughly equivalent techniques. There are also more complex oversampling techniques, including the creation of artificial data points with algorithms like Synthetic minority oversampling technique ...

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  4. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    Autoassociative self-supervised learning is a specific category of self-supervised learning where a neural network is trained to reproduce or reconstruct its own input data. [8] In other words, the model is tasked with learning a representation of the data that captures its essential features or structure, allowing it to regenerate the original ...

  5. Adaptive algorithm - Wikipedia

    en.wikipedia.org/wiki/Adaptive_algorithm

    An example of an adaptive algorithm in radar systems is the constant false alarm rate (CFAR) detector. In machine learning and optimization , many algorithms are adaptive or have adaptive variants, which usually means that the algorithm parameters such as learning rate are automatically adjusted according to statistics about the optimisation ...

  6. Self-tuning - Wikipedia

    en.wikipedia.org/wiki/Self-tuning

    Self-tuning metaheuristics have emerged as a significant advancement in the field of optimization algorithms in recent years, since fine tuning can be a very long and difficult process. [3] These algorithms differentiate themselves by their ability to autonomously adjust their parameters in response to the problem at hand, enhancing efficiency ...

  7. Hyper-heuristic - Wikipedia

    en.wikipedia.org/wiki/Hyper-heuristic

    A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper ...

  8. State–action–reward–state–action - Wikipedia

    en.wikipedia.org/wiki/State–action–reward...

    State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning. It was proposed by Rummery and Niranjan in a technical note [ 1 ] with the name "Modified Connectionist Q-Learning" (MCQ-L).

  9. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant . [ 1 ]