Search results
Results from the WOW.Com Content Network
Within statistics, oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a data set (i.e. the ratio between the different classes/categories represented). These terms are used both in statistical sampling, survey design methodology and in machine learning.
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.
MOA is an open-source framework software that allows to build and run experiments of machine learning or data mining on evolving data streams. It includes a set of learners and stream generators that can be used from the graphical user interface (GUI), the command-line, and the Java API.
Traditional machine learning systems have a fixed, pre-programmed learning algorithm to adjust their parameters. However, since the 1980s Jürgen Schmidhuber has published several self-modifying systems with the ability to change their own learning
Self-tuning metaheuristics have emerged as a significant advancement in the field of optimization algorithms in recent years, since fine tuning can be a very long and difficult process. [3] These algorithms differentiate themselves by their ability to autonomously adjust their parameters in response to the problem at hand, enhancing efficiency ...
In reinforcement learning, error-driven learning is a method for adjusting a model's (intelligent agent's) parameters based on the difference between its output results and the ground truth. These models stand out as they depend on environmental feedback, rather than explicit labels or categories. [ 1 ]
Every learning algorithm tends to suit some problem types better than others, and typically has many different parameters and configurations to adjust before it achieves optimal performance on a dataset. AdaBoost (with decision trees as the weak learners) is often referred to as the best out-of-the-box classifier.
This school of thought merely tries to find PSO algorithms and parameters that cause good performance regardless of how the swarm behaviour can be interpreted in relation to e.g. exploration and exploitation. Such studies have led to the simplification of the PSO algorithm, see below.