Search results
Results from the WOW.Com Content Network
There are several types of friction: Dry friction is a force that opposes the relative lateral motion of two solid surfaces in contact. Dry friction is subdivided into static friction ("stiction") between non-moving surfaces, and kinetic friction between moving surfaces.
Stiction (a portmanteau of the words static and friction) [1] is the force that needs to be overcome to enable relative motion of stationary objects in contact. [2] Any solid objects pressing against each other (but not sliding) will require some threshold of force parallel to the surface of contact in order to overcome static adhesion. [3]
The normal force is taken perpendicularly to the direction of relative motion; under the influence of gravity, and in the common case of an object supported by a horizontal surface, the normal force is just the weight of the object itself. As there is no relative motion under static friction, no work is done, and hence no energy can be dissipated.
The load then starts sliding, and the friction coefficient decreases to the value corresponding to load times the dynamic friction. Since this frictional force will be lower than the static value, the load accelerates until the decompressing spring can no longer generate enough force to overcome dynamic friction, and the load stops moving.
This theory is exact for the situation of an infinite friction coefficient in which case the slip area vanishes, and is approximative for non-vanishing creepages. It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact.
Relative motion of tractive surfaces - a sliding object (one in kinetic friction) has less traction than a non-sliding object (one in static friction). Direction of traction relative to some coordinate system - e.g., the available traction of a tire often differs between cornering, accelerating, and braking. [8]
Sliding friction (also called kinetic friction) is a contact force that resists the sliding motion of two objects or an object and a surface. Sliding friction is almost always less than that of static friction; this is why it is easier to move an object once it starts moving rather than to get the object to begin moving from a rest position.
Fluid bearings generally have very low friction—far better than mechanical bearings. One source of friction in a fluid bearing is the viscosity of the fluid leading to dynamic friction that increases with speed, but static friction is typically negligible. Hydrostatic gas bearings are among the lowest friction bearings even at very high speeds.