Search results
Results from the WOW.Com Content Network
Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample.The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.
In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect ...
MIL-STD-105 D Quick reference Table, TABLE I and TABLE IIA. MIL-STD-105 was a United States defense standard that provided procedures and tables for sampling by attributes based on Walter A. Shewhart, Harry Romig, and Harold F. Dodge sampling inspection theories and mathematical formulas.
In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.For an arbitrarily large number of samples where each sample, involving multiple observations (data points), is separately used to compute one value of a statistic (for example, the sample mean or sample variance) per sample, the sampling distribution is ...
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap .
In 1952 Midzuno and Sen independently described a sampling scheme that provides an unbiased estimator of the ratio. [15] [16] The first sample is chosen with probability proportional to the size of the x variate. The remaining n - 1 samples are chosen at random without replacement from the remaining N - 1 members in the population. The ...
In one-dimensional systematic sampling, progression through the list is treated circularly, with a return to the top once the list ends. The sampling starts by selecting an element from the list at random and then every k th element in the frame is selected, where k, is the sampling interval (sometimes known as the skip): this is calculated as: [3]