Search results
Results from the WOW.Com Content Network
It indicates altitude obtained when an altimeter is set to an agreed baseline pressure under certain circumstances in which the aircraft’s altimeter would be unable to give a useful altitude readout. Examples would be landing at a high altitude or near sea level under conditions of exceptionally high air pressure.
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
Therefore, a pressure altitude of 32,000 ft (9,800 m) is referred to as "flight level 320". In metre altitudes the format is Flight Level xx000 metres. Flight levels are usually designated in writing as FLxxx, where xxx is a two- or three-digit number indicating the pressure altitude in units of 100 feet (30 m). In radio communications, FL290 ...
at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1). The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles.
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa ), which is equivalent to 1,013.25 millibars , [ 1 ] 760 mm Hg , 29.9212 inches Hg , or 14.696 psi . [ 2 ]
Air pressure decreases with an increase of altitude—approximately 100 hectopascals per 800 meters or one inch of mercury per 1000 feet or 1 hectopascals per 30 feet near sea level. The aneroid altimeter is calibrated to show the pressure directly as an altitude above mean sea level , in accordance with a mathematical model atmosphere defined ...
Comparison of the 1962 US Standard Atmosphere graph of geometric altitude against air density, pressure, the speed of sound and temperature with approximate altitudes of various objects. [ 1 ] The U.S. Standard Atmosphere is a static atmospheric model of how the pressure , temperature , density , and viscosity of the Earth's atmosphere change ...
On Earth, the limit is around 18–19 km (11–12 mi; 59,000–62,000 ft) above sea level, [1] [2] above which atmospheric air pressure drops below 0.0618 atm (6.3 kPa, 47 mmHg, or about 1 psi). The U.S. Standard Atmospheric model sets the Armstrong limit at an altitude of 63,000 feet (19,202 m).