enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shunting yard algorithm - Wikipedia

    en.wikipedia.org/wiki/Shunting_yard_algorithm

    To convert, the program reads each symbol in order and does something based on that symbol. The result for the above examples would be (in reverse Polish notation) "3 4 +" and "3 4 2 1 − × +", respectively. The shunting yard algorithm will correctly parse all valid infix expressions, but does not reject all invalid expressions.

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .

  4. GNU Multiple Precision Arithmetic Library - Wikipedia

    en.wikipedia.org/wiki/GNU_Multiple_Precision...

    [8] GMP is part of the GNU project (although its website being off gnu.org may cause confusion), and is distributed under the GNU Lesser General Public License (LGPL). GMP is used for integer arithmetic in many computer algebra systems such as Mathematica [9] and Maple. [10] It is also used in the Computational Geometry Algorithms Library (CGAL).

  5. Operator-precedence parser - Wikipedia

    en.wikipedia.org/wiki/Operator-precedence_parser

    In computer science, an operator-precedence parser is a bottom-up parser that interprets an operator-precedence grammar.For example, most calculators use operator-precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN).

  6. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    Exponentiation and primality testing are primitive recursive. Given primitive recursive functions e {\displaystyle e} , f {\displaystyle f} , g {\displaystyle g} , and h {\displaystyle h} , a function that returns the value of g {\displaystyle g} when e ≤ f {\displaystyle e\leq f} and the value of h {\displaystyle h} otherwise is primitive ...

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary precision arithmetic is also used to compute fundamental mathematical constants such as π to millions or more digits and to analyze the properties of the digit strings [8] or more generally to investigate the precise behaviour of functions such as the Riemann zeta function where certain questions are difficult to explore via ...

  8. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    Note that C99 and C++ do not implement complex numbers in a code-compatible way – the latter instead provides the class std:: complex. All operations on complex numbers are defined in the <complex.h> header. As with the real-valued functions, an f or l suffix denotes the float complex or long double complex variant of the function.

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  1. Related searches how to reverse exponentiation in c++ 8 program in javascript pdf code

    how to reverse exponentiation in c++ 8 program in javascript pdf code generator