Search results
Results from the WOW.Com Content Network
The properties of ruthenium and osmium compounds are often similar. The +2, +3, and +4 states are the most common. The +2, +3, and +4 states are the most common. The most prevalent precursor is ruthenium trichloride , a red solid that is poorly defined chemically but versatile synthetically.
Ruthenium(IV) oxide is the inorganic compound with the formula Ru O 2. This black solid is the most common oxide of ruthenium . It is widely used as an electrocatalyst for producing chlorine, chlorine oxides, and O 2 . [ 1 ]
With its similar properties to and lower cost than rhodium, electric contacts are a major use of ruthenium. The ruthenium plate is applied to the electrical contact and electrode base metal by electroplating or sputtering. Osmium is a hard but brittle metal that remains lustrous even at high temperatures. It has a very low compressibility.
The properties of ruthenium and osmium compounds are often similar. The +2, +3, and +4 states are the most common. The +2, +3, and +4 states are the most common. The most prevalent precursor is ruthenium trichloride , a red solid that is poorly defined chemically but versatile synthetically.
The work function depends on the configurations of atoms at the surface of the material. For example, on polycrystalline silver the work function is 4.26 eV, but on silver crystals it varies for different crystal faces as (100) face: 4.64 eV, (110) face: 4.52 eV, (111) face: 4.74 eV. [13] Ranges for typical surfaces are shown in the table below ...
Perruthenate can be considered as the partially reduced derivative of ruthenium tetroxide. It is a much milder oxidising agent than the unionised compound, but still capable of oxidising a number of compounds via its reduction to ruthenate RuO 2− 4 .
The most important reagents for the introduction of ruthenium are ruthenium(III) chloride and triruthenium dodecacarbonyl. In its organometallic compounds, ruthenium is known to adopt oxidation states from -2 ([Ru(CO) 4] 2−) to +6 ([RuN(Me)4] −). Most common are those in the 2+ oxidation state, as illustrated below.
As quoted from this source in an online version of: J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 4; Table 4.1, Electronic Configuration and Properties of the Elements Touloukian, Y. S., Thermophysical Properties of Matter, Vol. 12, Thermal Expansion, Plenum, New York, 1975.