Search results
Results from the WOW.Com Content Network
Protein precipitation is widely used in downstream processing of biological products in order to concentrate proteins and purify them from various contaminants. For example, in the biotechnology industry protein precipitation is used to eliminate contaminants commonly contained in blood. [1]
The net charge of the protein, determined by the sum charge of its constituents, results in electrophoretic migration in a physiologic electric field. These effects are short-range because of the high di-electric constant of water, however, once the protein is close to a charged surface, electrostatic coupling becomes the dominant force. [8]
Schematic depiction of water movement through the narrow selectivity filter of the aquaporin channel The aromatic/ arginine or "ar/R" selectivity filter is a cluster of amino acids that help bind to water molecules and exclude other molecules that may try to enter the pore.
The order of the tendency of ions to make or break water structure is the basis of the Hofmeister series. Hofmeister discovered a series of salts that have consistent effects on the solubility of proteins and, as it was discovered later, on the stability of their secondary and tertiary structures.
Stability of beta barrel (β-barrel) transmembrane proteins is similar to stability of water-soluble proteins, based on chemical denaturation studies. Some of them are very stable even in chaotropic agents and high temperature. Their folding in vivo is facilitated by water-soluble chaperones, such as protein Skp. It is thought that β-barrel ...
Thermodynamically the flow of substances from one compartment to another can occur in the direction of a concentration or electrochemical gradient or against it. If the exchange of substances occurs in the direction of the gradient, that is, in the direction of decreasing potential, there is no requirement for an input of energy from outside the system; if, however, the transport is against ...
Developing protein crystals is a difficult process influenced by many factors, including pH, temperature, ionic strength in the crystallization solution, and even gravity. [3] Once formed, these crystals can be used in structural biology to study the molecular structure of the protein, particularly for various industrial or medical purposes.
The main factors affecting membrane fluidity are environmental (ie. temperature), and compositionally. [3] One way to increase membrane fluidity is to heat up the membrane. Lipids acquire thermal energy when they are heated up; energetic lipids move around more, arranging and rearranging randomly, making the membrane more fluid.