Search results
Results from the WOW.Com Content Network
DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription. Chemical manipulation of their molecular processes can change the rate at which cancer cells divide, as well as, the efficiency of transactions and cellular homeostasis.
The hexameric protein complex formed by MCM proteins is a key component of the pre-replication complex (pre-RC) and may be involved in the formation of replication forks and in the recruitment of other DNA replication related proteins. The MCM complex consisting of this protein and MCM2, 6 and 7 proteins possesses DNA helicase activity, and may ...
Each mitochondrion contains a small amount of DNA which is known as mitochondrial DNA (mtDNA). The Twinkle protein is involved in the production of mtDNA by functioning as an adenine nucleotide dependent DNA helicase, an enzyme that binds to DNA and temporarily unwinds the double helix of the DNA molecule so that it can replicate. [9]
For DNA polymerases to function, the double-stranded DNA helix has to be unwound to expose two single-stranded DNA templates for replication. DNA helicases are responsible for unwinding the double-stranded DNA during chromosome replication. Helicases in eukaryotic cells are remarkably complex. [106]
Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints.
The minichromosome maintenance protein complex (MCM) is a DNA helicase essential for genomic DNA replication. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer. [1] [2] As a critical protein for cell division, MCM is also the target of various checkpoint pathways, such as the S-phase entry and S-phase arrest ...
Stalled replication forks often lead to DNA breakage, further implicating the importance of unimpaired replication forks on genome integrity. [6] RRM3 helps cells progress through stalled replication forks, although this is a mechanism that is still poorly understood. [6] Rrm3p is one of many helicase proteins in Saccharomyces cerevisiae. Rrm3p ...
The MCM complex consisting of MCM6 (this protein) and MCM2, 4 and 7 possesses DNA helicase activity, and may act as a DNA unwinding enzyme.The hexameric protein complex formed by the MCM proteins is a key component of the pre-replication complex (pre-RC) and may be involved in the formation of replication forks and in the recruitment of other DNA replication related proteins.