enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    The explanation made in the original paper [1] was that batch norm works by reducing internal covariate shift, but this has been challenged by more recent work. One experiment [2] trained a VGG-16 network [5] under 3 different training regimes: standard (no batch norm), batch norm, and batch norm with noise added to each layer during training ...

  3. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, an orange, or an ...

  4. Metaclass - Wikipedia

    en.wikipedia.org/wiki/Metaclass

    Like Smalltalk, in Objective-C, the instance variables and methods are defined by an object's class. A class is an object, hence it is an instance of a metaclass. Like Smalltalk, in Objective-C, class methods are simply methods called on the class object, hence a class's class methods must be defined as instance methods in its metaclass.

  5. Instance-based learning - Wikipedia

    en.wikipedia.org/wiki/Instance-based_learning

    It is called instance-based because it constructs hypotheses directly from the training instances themselves. [3] This means that the hypothesis complexity can grow with the data: [3] in the worst case, a hypothesis is a list of n training items and the computational complexity of classifying a single new instance is O(n). One advantage that ...

  6. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    In computer science, online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update the best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once.

  7. Linear classifier - Wikipedia

    en.wikipedia.org/wiki/Linear_classifier

    In machine learning, a linear classifier makes a classification decision for each object based on a linear combination of its features.Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (), reaching accuracy levels comparable to non-linear classifiers while taking less time to train and use.

  8. 10 Discontinued Chick-Fil-A Menu Items That Customers Want ...

    www.aol.com/10-discontinued-chick-fil-menu...

    Teoscar Hernández returns to Dodgers on reported 3-year, $66 million deal. Weather. Weather. CBS News. Portion of Santa Cruz Wharf collapses amid high surf with 2 people rescued. Weather.

  9. Instance selection - Wikipedia

    en.wikipedia.org/wiki/Instance_selection

    Approaches for instance selection can be applied for reducing the original dataset to a manageable volume, leading to a reduction of the computational resources that are necessary for performing the learning process. Algorithms of instance selection can also be applied for removing noisy instances, before applying learning algorithms.