enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.

  3. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  4. Flow velocity - Wikipedia

    en.wikipedia.org/wiki/Flow_velocity

    In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):

  5. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  6. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    The energy flow rate is the volumetric flow rate multiplied by the energy content per unit volume or mass flow rate multiplied by the energy content per unit mass. Energy flow rate is usually derived from mass or volumetric flow rate by the use of a flow computer. In engineering contexts, the volumetric flow rate is usually given the symbol ...

  7. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Mass density, flow velocity and pressure are the so-called convective variables (or physical variables, or lagrangian variables), while mass density, momentum density and total energy density are the so-called conserved variables (also called eulerian, or mathematical variables). [1]

  8. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.

  9. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    A free falling mass from an elevation z > 0 (in a vacuum) will reach a speed =, when arriving at elevation z = 0. Or when rearranged as head: = The term ⁠ v 2 / 2g ⁠ is called the velocity head, expressed as a length measurement. It represents the internal energy of the fluid due to its motion.