enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    In probability theory, the complement of any event A is the event [not A], i.e. the event that A does not occur. [1] The event A and its complement [not A] are mutually exclusive and exhaustive. Generally, there is only one event B such that A and B are both mutually exclusive and exhaustive; that event is the complement of A.

  3. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Bayes' rule can then be written in the abbreviated form O ( A | B ) = O ( A ) ⋅ Λ ( A | B ) , {\displaystyle O(A\vert B)=O(A)\cdot \Lambda (A\vert B),} or, in words, the posterior odds on A {\displaystyle A} equals the prior odds on A {\displaystyle A} times the likelihood ratio for A {\displaystyle A} given information B {\displaystyle B} .

  4. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]

  5. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    [citation needed] One author uses the terminology of the "Rule of Average Conditional Probabilities", [4] while another refers to it as the "continuous law of alternatives" in the continuous case. [5] This result is given by Grimmett and Welsh [6] as the partition theorem, a name that they also give to the related law of total expectation.

  6. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement is named after Issai Schur [1] who used it to prove Schur's lemma, although it had been used previously. [2] Emilie Virginia Haynsworth was the first to call it the Schur complement. [3] The Schur complement is a key tool in the fields of numerical analysis, statistics, and matrix analysis.

  7. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...

  8. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement.

  9. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.