Search results
Results from the WOW.Com Content Network
A pie chart (or a circle chart) is a circular statistical graphic which is divided into slices to illustrate numerical proportion. In a pie chart, the arc length of each slice (and consequently its central angle and area ) is proportional to the quantity it represents.
Because PQ has length y 1, OQ length x 1, and OP has length 1 as a radius on the unit circle, sin(t) = y 1 and cos(t) = x 1. Having established these equivalences, take another radius OR from the origin to a point R(−x 1,y 1) on the circle such that the same angle t is formed with the negative arm of the x-axis.
The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes , whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra and calculus .
It is a special case of a chord, namely the longest chord for a given circle, and its length is twice the length of a radius. Disc: the region of the plane bounded by a circle. In strict mathematical usage, a circle is only the boundary of the disc (or disk), while in everyday use the term "circle" may also refer to a disc.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
These graphs have a vertex for each circle or disk, and an edge connecting each pair of circles or disks that have a nonempty intersection. Unit disk graphs may be formed in a different way from a collection of equal-radius circles, by connecting two circles with an edge whenever one circle contains the center of the other circle.
In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure.
Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...