enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pyomo - Wikipedia

    en.wikipedia.org/wiki/Pyomo

    Pyomo allows users to formulate optimization problems in Python in a manner that is similar to the notation commonly used in mathematical optimization. Pyomo supports an object-oriented style of formulating optimization models, which are defined with a variety of modeling components: sets, scalar and multidimensional parameters, decision variables, objectives, constraints, equations ...

  3. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...

  4. List of numerical-analysis software - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical-analysis...

    O-Matrix - a matrix programming language for mathematics, engineering, science, and financial analysis. OptimJ is a mathematical Java-based modeling language for describing and solving high-complexity problems for large-scale optimization.

  5. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO is an extension of the APMonitor Optimization Suite but has integrated the modeling and solution visualization directly within Python. A mathematical model is expressed in terms of variables and equations such as the Hock & Schittkowski Benchmark Problem #71 [2] used to test the performance of nonlinear programming solvers.

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework. Since the following is valid:

  7. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/.../Constraint_satisfaction_problem

    Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods.

  8. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    A hierarchy of convex optimization problems. (LP: linear programming, QP: quadratic programming, SOCP second-order cone program, SDP: semidefinite programming, CP: conic optimization.) Linear programming problems are the simplest convex programs. In LP, the objective and constraint functions are all linear.

  9. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.