Search results
Results from the WOW.Com Content Network
In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.
The two interval lengths are in the ratio c : r or r : c where r = φ − 1; and c = 1 − r, with φ being the golden ratio. Using the triplet, determine if convergence criteria are fulfilled. If they are, estimate the X at the minimum from that triplet and return. From the triplet, calculate the other interior point and its functional value.
The ratio of width to height of standard-definition television. In mathematics, a ratio (/ ˈ r eɪ ʃ (i) oʊ /) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3).
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.
A percentage change is a way to express a change in a variable. It represents the relative change between the old value and the new one. [6]For example, if a house is worth $100,000 today and the year after its value goes up to $110,000, the percentage change of its value can be expressed as = = %.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B occurring in the presence of A, and the odds of B in the absence of A.
For large values of n, the (1 + √ 2) n term dominates this expression, so the Pell numbers are approximately proportional to powers of the silver ratio 1 + √ 2, analogous to the growth rate of Fibonacci numbers as powers of the golden ratio. A third definition is possible, from the matrix formula