Search results
Results from the WOW.Com Content Network
Intra-cellular features are characteristic of a synthetically active cell. The cell density of full-thickness, human, adult, femoral condyle cartilage is maintained at 14.5 (±3.0) × 10 3 cells/ mm 2 from age 20 to 30 years. Although chondrocyte senescence occurs with aging, mitotic figures are not seen in normal adult articular cartilage.
A schematic for long bone endochondral ossification: [4] Primary endochondral ossification begins with the formation of a chondrocyte template. Afterwards, chondrocytes undergo hypertrophy beginning from the mid- diaphysis , eventually extending to the epiphyseal poles, vasculature invades the forming bone transporting mesenchymal stromal cells ...
Hyaline cartilage has fewer cells than elastic cartilage; there is more intercellular space. Hyaline cartilage is found in the nose, ears, trachea, parts of the larynx, and smaller respiratory tubes. Fibrous cartilage has the fewest cells so it has the most intercellular space. Fibrous cartilage is found in the spine and the menisci.
Zone of calcification In this zone, chondrocytes are either dying or dead, leaving cavities that will later become invaded by bone-forming cells. Chondrocytes here die when they can no longer receive nutrients or eliminate wastes via diffusion. This is because the calcified matrix is much less hydrated than hyaline cartilage. Zone of ossification
Hyaline cartilage is the most common kind of cartilage in the human body. [2] It is primarily composed of type II collagen and proteoglycans. [2] Hyaline cartilage is located in the trachea, nose, epiphyseal plate, sternum, and ribs. [2] Hyaline cartilage is covered externally by a fibrous membrane known as the perichondrium. [2]
The epiphyseal plate, epiphysial plate, physis, or growth plate is a hyaline cartilage plate in the metaphysis at each end of a long bone.It is the part of a long bone where new bone growth takes place; that is, the whole bone is alive, with maintenance remodeling throughout its existing bone tissue, but the growth plate is the place where the long bone grows longer (adds length).
The structure of these fibers, like the majority of collagen fibers, forms a triple helix structure. [ 3 ] Proteoglycans resist the compression generally put upon cartilage and generate the swelling pressure responsible for stress shielding the matrix from compression loading.
The ends of epiphyses are covered with hyaline cartilage ("articular cartilage"). The longitudinal growth of long bones is a result of endochondral ossification at the epiphyseal plate. Bone growth in length is stimulated by the production of growth hormone (GH), a secretion of the anterior lobe of the pituitary gland.